G E SOLID STATE

Optoelectronic Specifications.

MILLIMETERS

5 59 5 80 220 1 78 NOM 070 3 68 3 94 145

INCHES MIN. MAX

228 NOM 155 2

-41-71

NOTES

Matched Emitter-Detector Pair H23L1

The GE Solid State H23L1 is a matched emitter-detector pair which consists of a gallium arsenide, infrared emitting diode and a high speed integrated circuit detector. The output incorporates a Schmitt Trigger which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open collector output for maximum application flexibility. The clear epoxy packaging system is designed to optimize the mechanical resolution, coupling efficiency, cost, and reliability. The devices are marked with a color dot for easy identification of the emitter and detector.

absolute maximum ratings: (25°C)

EMITTER-DETECTOR PAIR

Lead Soldering Temperature TL (5 seconds maximum)

 $\ge 1/16''$ (1.6 mm) from Case

Storage Temperature

Operating Temperature

	an ¢b b1 DE E1 e1 GL L1 RS T	60 51 445 241 58 241 14 198 127 140 127 83 	75 NOM 4 70 2 67 69 2 67 1 40 NOM 	024 020 175 095 023 095 045 078 505 055 055 050 033 	030 NOM 185 105 .027 105 055 NOM - 065 NOM 037 065	1 3 3 1 3	
(BLACK) (BLUE) (BLACK) (BLACK) (BLUE) (BLACK) (BLACK) (BLACK	trolle 2. Cent 1.010 3. As n 4. Inch	leads La leads La led within erline of 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1		(050°) ment lock ting plant d from m <u>ATING</u> LANE DETEC	TYP. TTOR		-

INFRARED EMITTING	DIODE		
Power Dissipation Forward Current	P _E I _F	* 100 60	m₩ mA
(Continuous) Forward Current (Peak) (Pulse Width ≤ 1 µs	IF	3	A
PRR ≤ 300 pps) Reverse Voltage	VR °C above 25°C ambient.	6	v

TSTG

 T_{J}

-55°C to +85°C

-55°C to +85°C

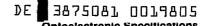

260° C

PHOTO DETECTOR			
Power Dissipation	Pp	**150	m₩
Output Current	I2	50	mА
Allowed Range	Vcc	0 to 16	v
Allowed Range	V ₂₁	0 to 16	v
••Derate 2.0 m	W/°C above 25°C	ambient.	

328

G E SOLID STATE

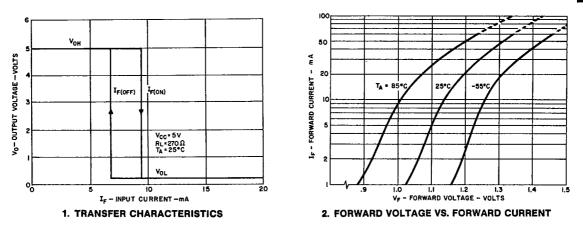
H23L1 -

01

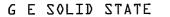
Optoelectronic Specifications

Г

EMITTER		MIN.	TYP.	MAX.	UNITS
Forward Voltage I _F = 20 mA	VF	-	1.10	1.50	volts
Reverse Current $(V_R = 3V)$	IR	—		10	micro- ampere
Capacitance ($V = 0, f = 1 MHz$)	CJ	-	—	100	pico- farads

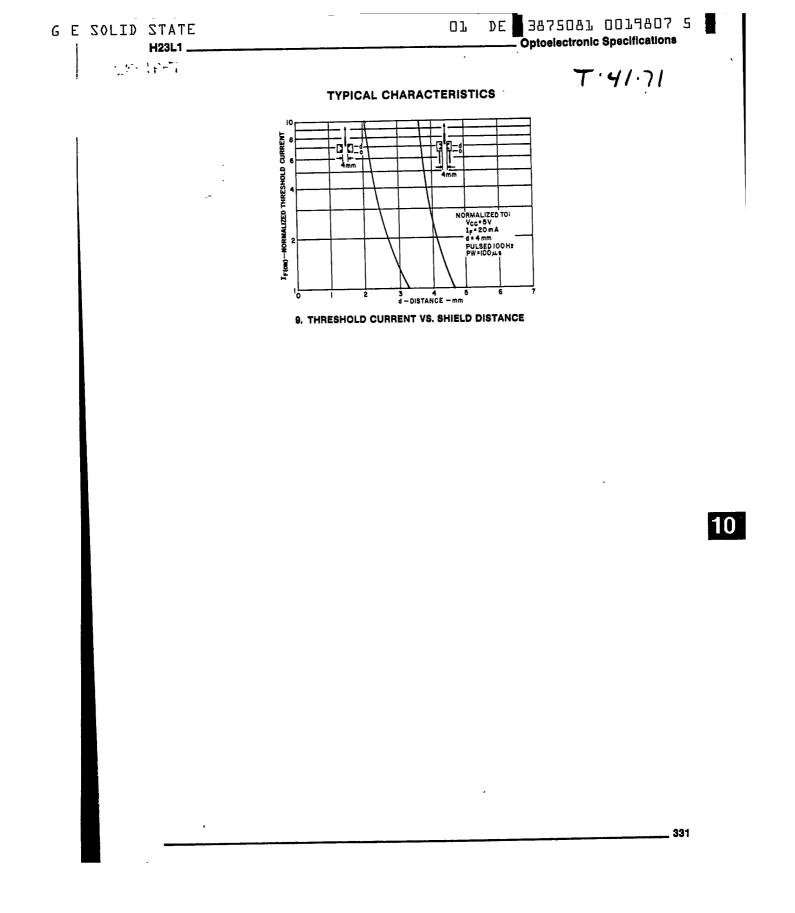

T · 41.71			71	
DETECTOR ($E_e = 0$)	MIN.	TYP.	MAX.	UNITS
Operating Voltage Range Vcc	4	-	15	volts
	-	1.0	5.0	milli- ampere
Output Current, High IoH $(I_F = 0, V_{cc} = V_0 = 15V)$	-		100	micro- ampere

coupled electrical characteristics (0-70°C)


Note: Coupled electrical characteristics are measured at a separation distance of 4mm (.155 inches) with the lenses of the emitter and detector on a common axis within 0.1mm and parallel within 5°.


	· · · · · · · · · · · · · · · · · · ·	MIN.	TYP.	MAX.	UNITS
Supply Current ($I_F = 5 \text{ mA}, V_{CC} = 5V$)	I _{3(on)}	-	1.6	5.0	milliampere .
Output Voltage, Low $(R_L = 270\Omega, V_{CC} = 5V)$	V _{OL}	-	0.2	0.4	volts
Turn-On Threshold Current ($R_L = 270\Omega$, $V_{CC} = 5V$)	I _{F(on)}	-	10.0	20.0	milliampere
Turn-Off Threshold Current ($R_L = 270\Omega$, $V_{CC} = 5V$)	IF(off)	1.0	7.5	—	milliampere
Hysteresis Ratio ($R_L = 270\Omega$, $V_{CC} = 5V$)	IF(off)/IF(on)	0.50	0.75	0.90	-
Switching Speeds: $(R_L = 270\Omega, V_{CC} =$	$5V, T_A = 25^{\circ}C$				
Rise Time	tr	-	0.1		μsec.
Fall Time	tf		0.1	—	μsec.

TYPICAL CHARACTERISTICS



_ 329

330.

